LEGIBILITY NOTICE. A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments. Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein. Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36 LA-UR--89-2791 DE89 016772 TITLE SHARP SHOCK MODEL FOR PROPAGATING DETONATION WAVES AUTHOR(S) Bruce Bukiet, T-14 Ralph Menikoff, T-14 SUBMITTED TO 1989 Topical Conference on Shock Compression of Condensed Matter Albuquerque, New Mexico August 14-17, 1989 # DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Concernment. Neither the United States Concernment more my agency thereof moreans of their employees makes any warrants express or implied or assume any legal lightlits or responsibility for the accuracy completeness or usefulness of tox information apparatus product or process disclosed or represent that its is, would not or ringe privately owned rights Reference term to any specific outmeteral product process of service by trule name trademark manufactures or otherwise does not necessarily constitute or imply its endorsement recommendation or favoring by the United States Government or any igency theirof. The siews and gumons of authors expressed herein do not precisially state or reflect those of the United States Covernment or any agency thereof. 8y acceptance of mis article, the publisher recognizes that the U.S. Government retains a nonexclusive inventy free license to publish or reproduce the publisher form of this contribution, or to allow others to do so for U.S. Government purposes. the Los mismos hat one: Laboratory requests that the bublisher dentify this article as work performed under the suspices of the U.S. Department of Energy LOS Alamos National Laboratory Los Alamos, New Mexico 67545 4.75 Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87544 Recent analyses of the reactive Euler equations have led to an understanding of the effect of curvature on an underdriven detonation wave. This advance can be incorporated into an improved sharp shock model for propagating detonation waves in hydrodynamic calculations. We illustrate the model with two simple examples, time dependent propagation of a diverging detonation wave in 1 D, and the steady 2 D propagation of a detonation wave in a rate stick. Incorporating this model into a 2 D front tracking code is discussed. #### 1 INTRODUCTION In numerical simulations of most explosive applications it is impractical to resolve the reaction zone of a detonation wave. A sharp shock model or programmed burn, in which an underdriven detonation is simply propagated with the CJ detonation velocity, is often used. This simple model is useful but neglects an important property of detonation waves. Namely, the velocity of a diverging detonation wave and the pressure behind the front are lower than the corresponding values for a planar CJ detonation wave. Recent analyses! A of the reactive Fuler equations have sed to an understanding of the correction terms for the wave speed and state variables behind the wave caused by the curvature of the defonation front. These advances may be incorporated into an suppoved sharp shock model which accounts for front misature when propagating a detonation wave. That seif sustantang underdriven detonation waves decouple from the flow behind is the basis for programmed burn and the amproved model, detonation shock dynamics." The sharp shock model is well suited to a front track ing code, since it explicitly takes into account the disconfinently of the variables across a wave. Front track ing has the advantage that it can account for waves from behind catching up to and strengthening the let mation wave. This occurs in the overdriven case and inportant for converging detonation waves #### 2. THE THEORY OF DIVERGING DETONATIONS An asymptotic analysis of a diverging detonation wave¹⁻¹ in an explosive described by the reactive Euler equations,⁸ shows that when the reaction zone length is small compared to the radius of curvature of the front, then to leading order the reaction zone is quasi-steady and may be modeled by a system of ODEs. The flow in the reaction zone of an under driven detonation wave is transonic. The profile of the reaction zone is determined by the trajectory of the ODEs through a critical saddle point. ^{1,8,9} This is the natural analog of a planar CJ detonation to diverging geometry. In particular, this analysis determines the detonation velocity $D(\kappa)$ and the state variables at the end of the reaction zone as a function of the mean curvature of the detonation front κ For a reaction rate of the form $$R = \begin{cases} (1 - \lambda)^n f(\text{state variables}) & : & \Gamma + \Gamma \\ 0 & : & \Gamma + \Gamma \end{cases}$$ (1) where λ is the reaction progress variable with $\lambda=0$ corresponding to reactants and $\lambda=1$ to reaction products, F is the temperature with F, the temperature below which the reaction rate is taken to be 0, and δ is the order of the reaction, the leading order curva ture correction to the detonation velocity has the torm $$D(\kappa) = \begin{cases} D_{t,T} & \alpha_1 \kappa & \text{higher order terms } \delta < 1 \\ D_{t,T} & \alpha_2 \kappa + \alpha_3 \kappa \ln \kappa + \ln \alpha + \delta < 1 \\ D_{t,T} & \alpha_4 \kappa^{1/\delta} + \ln \alpha + \delta < 1 \end{cases}$$ where D_{CJ} is the planar CJ detonation velocity and the as are constants. Parts of these results were found independently by fones ${}^{1/2}$ Stewage and Reful For a general equation of state (EOS) and rate law, the system of ODEs has to be solved numerically by way of a sheoting algorithm. When κ is sufficiently small at the critical point $\lambda \approx 1$ and the end of the reaction zone may be approximated by the sonic point. Other numerical calculations with this system of ODEs show that above a critical curvature $\kappa > \kappa_*$ there is no trajectory passing through the critical sonic point. This corresponds to the failure of a steady detonation wave to propagate, see ref. 9 ### 3. APPLICATIONS OF SHARP SHOCK MODEL In the sharp shock model the reaction zone is not resolved and the detonation wave is treated as a discontinuity. The theory in sec. 2 in effect determines the jump conditions for an underdriven diverging detonation wave. We have applied the sharp shock model to two examples. In the first example a spherically expanding detonation wave is calculated using the Random Choice Method (RCM). 11-11 This illustrates how numerical methods which use Riemann solvers for flows with shocks may be adapted for detonation waves using the wave curve determined from the the ory of the previous section. In the second example the steady state detonation wave in a rate stick experiment is calculated by solving an ODE. This illustrates how a 2 D detonation wave is propagated using the wave speed at each point from the local curvature of the front. The procedures in these examples form the basis for incorporating the sharp shock model in a time dependent 2-D numerical algorithm such as front 4 acking # 3.1 Spherically Diverging Detonation Wave It has been shown 10 that RCM used for 1 D fluid dynamics can be adapted for calculations with diverging detonation waves. In RCM the state variables of a fluid are represented as piecewise constant over a grid block. At each time step, the waves between adjacent will are resolved by solving a Riemann problem. The olution to the Riemann problem is determined from the pair of wave curves with initial states from adjacent cells. This Riemann solution is used in apdating the states to the next time step. Source terms due to geometry are taken into account by operator splitting ¹⁴. In this method, shock waves are kept per feetly sharp with no smearing. The RCM can be used for any discontinuous wave if the wave curve can be specified. The sharp shock model is the specification of a wave curve for a detonation wave; the detonation velocity and the state at the end of the reaction zone. For an underdriven deconation only one point on the wave curve is needed. This is the analog of the planar CJ detonation. However, in diverging geometry the wave curve depends on the radius (front curvature) as well as the initial state. This method has been used to model an expert ment performed by Venable at the Los Alamos PHER MEX facility in which a spherically diverging detonation in Comp. B was radiographed. This provides data for the density profile of the Taylor wave behind the detonation. 15 Calculations of this experiment have been described to using wave curves determined by the theory in sec. 2. Each calculation corresponded to a model for the explosive consisting of a HOM EOS and an Arthemus rate law with a different order of reac tion. Because of the exponential tail of the teaction with this rate law, the end of the reaction zone was taken to correspond to the some point. The state at the end of the reaction zone as a function of a was hi to the form shown in equation (2). A comparison of density profiles for numerical experiments and radio graphic data are shown in Fig. 1 along with the computed planar result. As A mereases, the shape of the density profile more closely approximates the data The uncertainty of the rate and sensitivity of the theory suggests that the wave curve for an under driven diverging detonation be determined empirically. This is especially important for beteroveneous explosives because hot spots due to inhomogeneities affect the rate law giving rise to large uncertainties. 3.2 Modeling the Rate Stick Experiment. A rate stick is a long exhibition is harge of existing are autromided by a continuing wall. Let exist a re- Fig. 1. Calculated and experimental Taylor wave density profiles for the explosive Comp-B. The uppermost curve is the calculated plane wave profile. This is followed by curves representing a spherically expanding Comp-B explosion at a radius of approximately 6.4 cm. The lowest curve is the calculated profile where $\delta = 1/2$ followed by profiles in which $\delta = 1$, $\delta = 2$, and $\delta = 4$, respectively. The curved labelled PHERMEX is the experimental result. the radial and axial coordinates, and R the charge radius. In steady state the detonation front has the form $Z(r,t) = Z_0(r) + \sigma t$ where σ is the detonation velocity in the axial direction. For a cylindrically symmetric 2-D surface the sum of the principle curvatures $$A(r) = -\frac{\partial_r^2 Z + (\partial_r Z/r)[1 + (\partial_r Z)^{2}]^{\frac{1}{2}}}{[1 + (\partial_r Z)^{2}]^{\frac{1}{2}}}$$ (3) The axial velocity of a point on the front depends on both the slope $\partial_{\sigma}Z$ and the local wave speed. This leads to the equation for the shape of the front $$\sigma = D(\pi)[1 + (\partial_\tau Z)^2]^{\frac{1}{4}} \tag{4}$$ Equations (3) and (4) are equivalent to a second order ODE for Z(r). Its solution depends on the boundary outlition at the confining wall. The leading singularity at the boundary is the save pattern consisting of an incoming shock in the Fig. 2. Sketch of wave patterns at boundary: A. Strongly confined case; B. Weakly confined case. Fig. 3. Sketch of shock polars for degenerate diffraction node; A. Transmission node; B. Anomalous reflection node. unreacted high explosive (HE) overtaking the HE wall contact and giving rise to an outgoing transmitted shock in the wall. There are two cases to consider, see Fig. 2. In the terminology of front tracking 16 the wave patterns are degenerate diffraction nodes. The strongly confined case corresponds to a transmission node, no reflected wave. The weakly confined case cor responds to an anomalous reflection node, some shock with reflected rarefaction (Prandtl Meyer fan) 17. The wave pattern is determined by a shock polar analy sie, see Fig. 3. The shock polars depend on the wave speed at and the shock Hugomots for the unreacted HE and the wall. The intersection of the shock polars then determines the shock strength and the Curning angle # as a function of a. Finally, from the mass flow equation through an oblique shock we find $$\partial_t Z(-R) = (\rho_0 \sigma_t m)^T + 1 \Delta \gamma$$ (2) where $m^F = \Delta P/\Delta V$ is the square of the mass flow through the HE shock, ρ_0 is the initial HF density P is pressure, and V is specific volume. In the weakly confined case the detonation wave is determined by the sonic point on the unreacted HE shock polar. Because the boundary conditions for the detonation front are the slopes $\partial_r Z(R)$ at the wall from the shock polar analysis and $\partial_r Z(0) = 0$ on the axis, the second order ODE is an eigenvalue problem. Varying R and solving the eigenvalue problem determines the diameter effect, i.e., σ as a function of R. The radius at failure R_f is determined by the condition that $\kappa(-R_f) = \kappa_*$. A solution to the eigenvalue problem for the detonation front does not exist for $R < R_f$. From experimental rate stick data of the axial detonation velocity and the shape of the detonation front, $D(\kappa)$ and κ_* may be empirically determined using equations (3) and (4) independent of the need for assumptions on the EOS of HE reactants or products, or the reaction rate. Further details of this model for the rate stick experiment are presented elsewhere. ^{18–19} #### **4 FRONT TRACKING ALGORITHM** The sharp shock model treats a detonation wave as a discontinuity. Consequently, it is well suited to the front tracking algorithm for gas dynamics. ^{18–20} Fronts such as shocks and contacts are superimposed on a mesh for the smooth flow using double valued state variables to account for discontinuous waves. The states along the front serve as boundary conditions for the smooth flow within connected interior regions. A front is propagated by solving a Riemann problem to determine the local wave speed at each point. Compared to other numerical algorithms, front tracking yields a higher degree of a curacy for a given mesh resolution. Front tracking is a general algorithm for problems with discontinuities. The physical information which iescribes the subgrid structure needed to propagate a discontinuity is found in the wave curve. Reaction zone analysis, which has been performed for an underdriven detonation, determines the wave curve. The new feature is that the wave curve depends on the local curvature as well as the shead state. In general, the reaction zone analysis is also needed for an over driven detonation wave. This would then allow the front tracking algorithm to be used for both converging and diverging detonation waves. The underlying physical approximation that allows the sharp shock model to be used in front tracking is that the reaction zone is quasi-steady. #### REFERENCES - An Asymptotic Analysis of an Expanding Detonation, J. Jones, NYU. Thesis (1986). - The Spherical Detonation, J. Jones, Adv. in Appl. Math., in press - S. Stewart and J. Bdzil, Combustion and Flame 72 (1988) 311–323. - J. Bdzil, J. Fluid Mech. 108 (1981) 195–226 - Contribution a la Theorie Hydrodynamique de l'onde de Detonation dans les Explosifs Condenses, G. Damamine, L'Université de Poitiers Thesis (1987). - 6 The Effect of Curvature on Detonation Speed, B. Bukiet, To appear SIAM J. on Appl. Math. (October 1989). - 7 J. Bdzil and S. Stewart, Phys. Fluids A1 (1989) 1261–1267 - Detonation, W. Fickett and W. Davis, Berkeley, California, University of California Press (1979) - M. Huerta, Phys. Fluids 28 (1985) 2735–2743. - Density Profiles for Diverging Detonations B. Bukiet, Contemporary Mathematics 100, Providence, RI, AMS (1989) - 11 J. Glimin, Comin. Pure Appl. Math. 48, 1965-695, 715 - 12 A Chorin, J Comp. Phys. 22 (1976) 517-533 - C. Moler and J. Smoller, Arch. Rat. Mech. Anal. 37 (1970) 309–322. - 14. G. Sod, J. Fluid Mech. 83 (1977) 785-794 - Numerical Modeling of Detonation, C. Mader. Berkeley, California, University of California Press (1979) - 16 J. Climm, C. Klingenberg, O. McBryan, B. Plohi D. Sharp, and S. Yaniv, Adv. Appl. Math. 6 (1985) 259–290 - Anomalous Reflection of a Shock Wave at a Contact, J. W. Groze and R. Menikoff, in press. - R. Memkoff, IMPACT 1 (1989) 408-479. - R. Engelke and J. Bdzil, Phys. Fluids 26, 2283-1230 (122). - 20. J. Glimm, F. Isaacson, D. Marchesin, and O. McDryan, Adv. Appl. Math. 2, 4981, 91–119.